Next: Error Function, Previous: Gamma and Factorial Functions, Up: Special Functions [Contents][Index]
The Exponential Integral and related functions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, A&S Chapter 5.
The Exponential Integral E1(z) defined as
$$ E_1(z) = \int_z^\infty {e^{-t} \over t} dt $$with \(\left| \arg z \right| < \pi\). (A&S eqn 5.1.1) and (DLMF 6.2E2)
This can be written in terms of other functions. See expintrep for examples.
The Exponential Integral Ei(x) defined as
$$ Ei(x) = - -\kern-10.5pt\int_{-x}^\infty {e^{-t} \over t} dt = -\kern-10.5pt\int_{-\infty}^x {e^{t} \over t} dt $$with x real and x > 0. (A&S eqn 5.1.2) and (DLMF 6.2E5)
This can be written in terms of other functions. See expintrep for examples.
The Exponential Integral li(x) defined as
$$ li(x) = -\kern-10.5pt\int_0^x {dt \over \ln t} $$with x real and x > 1. (A&S eqn 5.1.3) and (DLMF 6.2E8)
This can be written in terms of other functions. See expintrep for examples.
The Exponential Integral En(z) (A&S eqn 5.1.4) defined as
$$ E_n(z) = \int_1^\infty {e^{-zt} \over t^n} dt $$with \({\rm Re}(z) > 1\) and n a non-negative integer.
For half-integral orders, this can be written in terms of erfc
or erf. See expintexpand for examples.
The Exponential Integral Si(z) (A&S eqn 5.2.1 and DLMF 6.2#E9) defined as
$$ {\rm Si}(z) = \int_0^z {\sin t \over t} dt $$This can be written in terms of other functions. See expintrep for examples.
The Exponential Integral Ci(z) (A&S eqn 5.2.2 and DLMF 6.2#E13) defined as
$$ {\rm Ci}(z) = \gamma + \log z + \int_0^z {{\cos t - 1} \over t} dt $$with \(|\arg z| < \pi\).
This can be written in terms of other functions. See expintrep for examples.
The Exponential Integral Shi(z) (A&S eqn 5.2.3 and DLMF 6.2#E15) defined as
$$ {\rm Shi}(z) = \int_0^z {\sinh t \over t} dt $$This can be written in terms of other functions. See expintrep for examples.
The Exponential Integral Chi(z) (A&S eqn 5.2.4 and DLMF 6.2#E16) defined as
$$ {\rm Chi}(z) = \gamma + \log z + \int_0^z {{\cosh t - 1} \over t} dt $$with \(|\arg z| < \pi\).
This can be written in terms of other functions. See expintrep for examples.
Default value: false
Change the representation of one of the exponential integrals,
expintegral_e(m, z), expintegral_e1, or
expintegral_ei to an equivalent form if possible.
Possible values for expintrep are false,
gamma_incomplete, expintegral_e1, expintegral_ei,
expintegral_li, expintegral_trig, or
expintegral_hyp.
false means that the representation is not changed. Other
values indicate the representation is to be changed to use the
function specified where expintegral_trig means
expintegral_si, expintegral_ci; and expintegral_hyp
means expintegral_shi or expintegral_chi.
Here are some examples for expintrep set to gamma_incomplete:
(%i1) expintrep:'gamma_incomplete;
(%o1) gamma_incomplete
(%i2) expintegral_e1(z);
(%o2) gamma_incomplete(0, z)
(%i3) expintegral_ei(z);
(%o3) log(z) - log(- z) - gamma_incomplete(0, - z)
(%i4) expintegral_li(z);
(%o4) log(log(z)) - log(- log(z)) - gamma_incomplete(0, - log(z))
(%i5) expintegral_e(n,z);
n - 1
(%o5) gamma_incomplete(1 - n, z) z
(%i6) expintegral_si(z);
(%o6) (%i ((- log(%i z)) + log(- %i z) - gamma_incomplete(0, %i z)
+ gamma_incomplete(0, - %i z)))/2
(%i7) expintegral_ci(z);
(%o7) log(z) - (log(%i z) + log(- %i z) + gamma_incomplete(0, %i z)
+ gamma_incomplete(0, - %i z))/2
(%i8) expintegral_shi(z);
log(z) - log(- z) + gamma_incomplete(0, z) - gamma_incomplete(0, - z)
(%o8) ---------------------------------------------------------------------
2
(%i9) expintegral_chi(z);
(%o9)
(- log(z)) + log(- z) + gamma_incomplete(0, z) + gamma_incomplete(0, - z)
- -------------------------------------------------------------------------
2
For expintrep set to expintegral_e1:
(%i1) expintrep:'expintegral_e1;
(%o1) expintegral_e1
(%i2) expintegral_ei(z);
(%o2) log(z) - log(- z) - expintegral_e1(- z)
(%i3) expintegral_li(z);
(%o3) log(log(z)) - log(- log(z)) - expintegral_e1(- log(z))
(%i4) expintegral_e(n,z);
(%o4) expintegral_e(n, z)
(%i5) expintegral_si(z);
(%o5) (%i ((- log(%i z)) - expintegral_e1(%i z) + log(- %i z)
+ expintegral_e1(- %i z)))/2
(%i6) expintegral_ci(z);
(%o6) log(z)
log(- %i z) (expintegral_e1(%i z) + expintegral_e1(- %i z)) log(%i z)
- ---------------------------------------------------------------------
2
(%i7) expintegral_shi(z);
log(z) + expintegral_e1(z) - log(- z) - expintegral_e1(- z)
(%o7) -----------------------------------------------------------
2
(%i8) expintegral_chi(z);
(- log(z)) + expintegral_e1(z) + log(- z) + expintegral_e1(- z)
(%o8) - ---------------------------------------------------------------
2
For expintrep set to expintegral_ei:
(%i1) expintrep:'expintegral_ei;
(%o1) expintegral_ei
(%i2) expintegral_e1(z);
1
log(- z) - log(- -)
z
(%o2) (- log(z)) + ------------------- - expintegral_ei(- z)
2
(%i3) expintegral_ei(z);
(%o3) expintegral_ei(z)
(%i4) expintegral_li(z);
(%o4) expintegral_ei(log(z))
(%i5) expintegral_e(n,z);
(%o5) expintegral_e(n, z)
(%i6) expintegral_si(z);
(%o6) (%i (log(%i z) + 2 (expintegral_ei(- %i z) - expintegral_ei(%i z))
%i %i
- log(- %i z) + log(--) - log(- --)))/4
z z
(%i7) expintegral_ci(z);
(%o7) ((- log(%i z)) + 2 (expintegral_ei(%i z) + expintegral_ei(- %i z))
%i %i
- log(- %i z) + log(--) + log(- --))/4 + log(z)
z z
(%i8) expintegral_shi(z);
(%o8) ((- 2 log(z)) + 2 (expintegral_ei(z) - expintegral_ei(- z)) + log(- z)
1
- log(- -))/4
z
(%i9) expintegral_chi(z);
(%o9)
1
2 log(z) + 2 (expintegral_ei(z) + expintegral_ei(- z)) - log(- z) + log(- -)
z
----------------------------------------------------------------------------
4
For expintrep set to expintegral_li:
(%i1) expintrep:'expintegral_li;
(%o1) expintegral_li
(%i2) expintegral_e1(z);
1
log(- z) - log(- -)
- z z
(%o2) (- expintegral_li(%e )) - log(z) + -------------------
2
(%i3) expintegral_ei(z);
z
(%o3) expintegral_li(%e )
(%i4) expintegral_li(z);
(%o4) expintegral_li(z)
(%i5) expintegral_e(n,z);
(%o5) expintegral_e(n, z)
(%i6) expintegral_si(z);
%i z - %e z %pi signum(z)
%i (expintegral_li(%e ) - expintegral_li(%e ) - -------------)
2
(%o6) - ----------------------------------------------------------------------
2
(%i7) expintegral_ci(z);
%i z - %i z
expintegral_li(%e ) + expintegral_li(%e )
(%o7) ------------------------------------------------- - signum(z) + 1
2
(%i8) expintegral_shi(z);
z - z
expintegral_li(%e ) - expintegral_li(%e )
(%o8) -------------------------------------------
2
(%i9) expintegral_chi(z);
z - z
expintegral_li(%e ) + expintegral_li(%e )
(%o9) -------------------------------------------
2
For expintrep set to expintegral_trig:
(%i1) expintrep:'expintegral_trig;
(%o1) expintegral_trig
(%i2) expintegral_e1(z);
(%o2) log(%i z) - %i expintegral_si(%i z) - expintegral_ci(%i z) - log(z)
(%i3) expintegral_ei(z);
(%o3) (- log(%i z)) - %i expintegral_si(%i z) + expintegral_ci(%i z) + log(z)
(%i4) expintegral_li(z);
(%o4) (- log(%i log(z))) - %i expintegral_si(%i log(z))
+ expintegral_ci(%i log(z)) + log(log(z))
(%i5) expintegral_e(n,z);
(%o5) expintegral_e(n, z)
(%i6) expintegral_si(z);
(%o6) expintegral_si(z)
(%i7) expintegral_ci(z);
(%o7) expintegral_ci(z)
(%i8) expintegral_shi(z);
(%o8) - %i expintegral_si(%i z)
(%i9) expintegral_chi(z);
(%o9) (- log(%i z)) + expintegral_ci(%i z) + log(z)
For expintrep set to expintegral_hyp:
(%i1) expintrep:'expintegral_hyp; (%o1) expintegral_hyp (%i2) expintegral_e1(z); (%o2) expintegral_shi(z) - expintegral_chi(z) (%i3) expintegral_ei(z); (%o3) expintegral_shi(z) + expintegral_chi(z) (%i4) expintegral_li(z); (%o4) expintegral_shi(log(z)) + expintegral_chi(log(z)) (%i5) expintegral_e(n,z); (%o5) expintegral_e(n, z) (%i6) expintegral_si(z); (%o6) - %i expintegral_shi(%i z) (%i7) expintegral_ci(z); (%o7) (- log(%i z)) + expintegral_chi(%i z) + log(z) (%i8) expintegral_shi(z); (%o8) expintegral_shi(z) (%i9) expintegral_chi(z); (%o9) expintegral_chi(z)
Default value: false
Expand expintegral_e(n,z) for half
integral values in terms of erfc or erf and
for positive integers in terms of expintegral_ei.
(%i1) expintegral_e(1/2,z);
1
(%o1) expintegral_e(-, z)
2
(%i2) expintegral_e(1,z);
(%o2) expintegral_e(1, z)
(%i3) expintexpand:true;
(%o3) true
(%i4) expintegral_e(1/2,z);
sqrt(%pi) erfc(sqrt(z))
(%o4) -----------------------
sqrt(z)
(%i5) expintegral_e(1,z);
1
log(- -) - log(- z)
z
(%o5) (- log(z)) - ------------------- - expintegral_ei(- z)
2
Next: Error Function, Previous: Gamma and Factorial Functions, Up: Special Functions [Contents][Index]